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Tillman et al. (2017) used evidence-accumulation modeling to ascertain the effects of a conversation (either
with a passenger or on a hands-free cell phone) on a drivers” mental workload. They found that a concurrent
conversation increased the response threshold but did not alter the rate of evidence accumulation. However,
this earlier research collapsed across speaking and listening components of a natural conversation,
potentially masking any dynamic fluctuations associated with this dual-task combination. In the present
study, a unique implementation of the detection response task was used to simultaneously measure the
demands on the driver and the nondriver when they were speaking or when they were listening. We found
that the natural ebb and flow of a conversation altered both the rate of evidence accumulation and the
response threshold for drivers and nondrivers alike. The dynamic fluctuations in cognitive workload
observed with this novel method illustrate how quickly the parameters of cognition are altered by real-time

task demands.

Public Significance Statement

This study presents a novel method for measuring and modeling the dynamic fluctuation in workload of
in-person and cell phone conversations of both the driver and the nondriver. Both interlocutors exerted
more mental effort while speaking than listening and the effects of the conversation were additive with
the driving task. Our modeling suggests that the increased workload associated with conversing whilst
driving is due to a decrease in rate of evidence accumulation and an increase in response caution.

Keywords: workload, evidence accumulation modeling, driving, conversation, distraction

The real-world tasks of driving an automobile and engaging in a
conversation with an interlocutor are continuous, and each task
results in dynamic fluctuations in the effort required to maintain
acceptable levels of performance. Driving performance fluctuates
with the difficulty of the driving task (Teh et al., 2014). The demands
of a conversation fluctuate between speech comprehension, which is
easier, and speech production, which is harder, (e.g., Lee et al.,
2017, but see Kubose et al., 2006). When driving and conversing are
performed concurrently, they compete for limited capacity attention
(Kahneman, 1973). For example, driving performance degrades as
the difficulty and complexity of the conversation increases

(McKnight & McKnight, 1993; Nunes & Recarte, 2002). Similarly,
a conversation degrades as the demands of driving increase (Drews
et al., 2008; Nunes & Recarte, 2002).

Tillman et al. (2017) measured the cognitive workload of a dyad
engaged in a natural conversation. They contrasted an in-person
conversation (i.e., between a driver and a passenger in a vehicle)
with a hands-free cell phone conversation in which the driver and
nondriver were in different physical locations. To obtain measures
of workload, they implemented a detection response task (DRT;
International Standards Organization, ISO DIS 17488, 2016),
which has been shown to be sensitive to cognitive workload
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ioral analyses is available at the following link: https://osf.io/4a9xb/,
additionally, the modeling software necessary to fit the LBAO model to
the data utilized in this study is also available within the LBAO_Mode-
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(e.g., Boehm et al., 2021; Castro et al., 2016; Cooper et al., 2016)
every 3-5 s, “yoked” DRT devices (one fitted to the driver and one
fitted to the nondriver) flashed a light in the peripheral field of view
of the left eye of each member of the conversational dyad. Both the
driver and nondriver responded separately to the onset of the light by
pressing a microswitch attached to their finger.

Tillman et al. (2017) found that DRT responses were faster when
the driver was not conversing (i.e., driving only) than when they
were also conversing in-person or over a cell phone. The response
time (RT) for the latter conditions did not differ, in line with
previous research (e.g., Nunes & Recarte, 2002; Strayer et al.,
2003; Strayer & Johnston, 2001). The nondriver’s responses
were faster than the driver and, like with the driver, were equivalent
for passenger and cell phone conversations. The fact that RT was
elevated for the driver suggests that the driving task and the
conversation task compete for limited attentional resources.
Tillman et al. (2017) modeled the driver’s DRT performance using
an evidence-accumulation model that enables measurement of the
mean rate of evidence accumulation (i.e., drift rate), the threshold
amount of evidence required to trigger a response (i.e., response
caution), and nondecision time (i.e., the time to complete perceptual
encoding and motor response processes) (Brown & Heathcote,
2008; Ratcliff & McKoon, 2008). A single-bound diffusion model
(Heathcote, 2004; Logan et al., 2014) was fitted to the driver’s DRT
responses and found that the workload effect was due to an increase
in a participant’s response thresholds. There was scant evidence that
the rate of evidence accumulation for the driver changed with the
addition of the conversation task.

This pattern is surprising because the driving and conversation
tasks seem to compete for limited attentional resources (e.g.,
Kahneman, 1973), a pattern that should theoretically impact the
rate of evidence accumulation. Under this logic, the rate of evidence
accumulation should decrease when a participant divides their
attention between two attention-demanding tasks, such as the
decreased performance in visual search behavior, visual detection,
and response selection capacities while driving and talking demon-
strated by Nunes and Recarte (2002).

As evidence-accumulation modeling originates from the
decision-making literature (e.g., Ratcliff & Rouder, 1998), the
theoretical framework of this approach suggests two types of mental
processes. Bargh and Chartrand (1999) listed the examples of these
processes as ‘“‘conscious—nonconscious, controlled—automatic,
explicit-implicit, systematic—heuristic,” but one refers to willfully
regulating behavior and the other seems to be less controlled by the
awareness of the individual. In this framework, Tillman et al. (2017)
suggest that only the certainty, or cautiousness, with which we make
a response matters in terms of cognitive workload.

Several of the same decision-making frameworks have been
applied to the mechanisms of multitasking limitations, including
limited-capacity attention (e.g., Kahneman, 1973; Navon &
Gopher, 1979). However, multitasking requires allocating atten-
tion among two or more goals (e.g., Braver, 2012; Wickens &
McCarley, 2019). Researchers argue that this process involves a
fundamentally different mechanism than maintaining the effort to
accomplish one goal (e.g., Howard et al., 2020; Norman &
Shallice, 1986). In multitasking, attention’s limited processing
capacity may account for less than allocating attention with regard
to performance changes, thereby creating a dual-process model of

performance with the mean rate of evidence accumulation (i.e.,
drift rate) as one process and the threshold amount of evidence
required to trigger a response (i.e., response caution or bias) as the
other related process.

However, an important limitation of Tillman et al. (2017) is that
they averaged over the speech comprehension and speech produc-
tion components of the conversation, possibly weakening any
effects of workload on the rate of evidence accumulation. As noted
above, speech comprehension and production place different de-
mands on an interlocutor, particularly if they are concurrently
driving an automobile (e.g., Strayer et al., 2015; Strayer et al., in
press). In the conversational dyad, there should be a reciprocal
pattern of workload such that workload is higher for the driver when
they are speaking than when they are listening. By contrast, the
workload of the nondriver should be higher when the driver is
listening (and the nondriver is talking) and lower when the driver is
talking (and the nondriver is listening). Therefore, these effects of
speech should not be collapsed across due to their differential impact
on workload. The present study uses the dual-DRT configuration
developed by Tillman et al. (2017) to measure and model the
performance of both the speaking and listening of the driver and
nondriver as they engage in a naturalistic conversation in-person or
remotely over a hands-free cell phone. To discriminate between
fluctuations in speaking and listening, microphones are attached to
each of the DRT devices (i.e., one for the driver and one for the
nondriver) and the audio is used to trigger a code for who is speaking
and who is listening.

Behaviorally, we predict that DRT RT will be longer, and the
probability of responding (i.e., hit rate) lower, for the driver than for
the nondriver, reflecting the added load associated with driving. We
also predict that RT will be higher and hit rate lower when the
participant is speaking than when they are listening. Moreover, we
predict that the pattern of DRT data for the driver and nondriver will
mirror one another.

Unlike Tillman et al. (2017), who modeled only the driver’s DRT
performance collapsed over speaking and listening using the single-
bound diffusion model, we separately modeled cell phone and
passenger conversations for the passenger. Tillman et al. focused
only on response times and did not take into account failures to
respond to the DRT stimulus (omissions) as they occurred at a low
rate when in the conversation conditions ("4%) and not at all in their
condition with no conversation. In the experiment reported here
omissions occurred at a higher rate and differed more markedly
across conditions, suggesting that they could not be ignored. Hence,
we used Damaso et al. (2021) linear ballistic accumulator with
omissions (LBAO) model to provide a simultaneous account of both
RT and omissions.

Like the diffusion model, the LBAO has parameters for response
caution (B), the mean rate of evidence accumulation (v), and
perceptual encoding, and motor response production time (Z).
We predict that the rate of evidence accumulation and the threshold
for responding to the DRT will be modulated by the dynamic
fluctuations in workload associated with the conversation, so con-
versational turn-taking will result in shifts in both threshold and rate
parameters. Additionally, the LBAO has a parameter for trial-to-trial
variability in drift rate (sv), which follows a normal distribution.
When rate variability causes a sufficiently small rate to be sampled
an omission can occur because the threshold amount of evidence is
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not accumulated before the maximum time allowed for a DRT
response (3 s). Ratcliff and Strayer (2014) used the same mechanism
in the diffusion model to account for omissions, but this model could
not distinguish between rates and threshold and had no closed-form
likelihood, making it difficult to fit. The LBAO overcomes both of
these limitations, enabling an understanding of the effects of
dynamic fluctuations of cognitive workload on omissions while
also disentangling rate and threshold effects. We predict that
manipulations that reduce capacity will also increase omissions
by making small rates more likely.

Method
Transparency and Openness
Data

The data for the discussed studies are available with the link
posted here and in the author note: https://osf.io/4a9xb/

Analytic Methods

The analytic code needed to reproduce analyses is available and
the link to access this information is provided in the author note with
behavioral analyses within Final Analysis cop.zip and modeling
analyses within LBAO_Modeling_ConvoDrive copy.zip.

Materials

Certain materials, such as the DS-600 DriveSafety driving simu-
lator, the driving scenario, and the Detection Response Task devices
(ISO DIS 17488, 2016), are not available. However, DRT devices
and standards can be purchased from https://redscientific.com/ and
the International Organization for Standardization 17488. Methods
for the LBAO can be found in Damaso et al. (2021).

Participants

Forty-four participants (23 female, age: M = 21.1, SD = 3.4) were
recruited in 22 dyads from University of Utah undergraduate
psychology courses. Information on race, ethnicity, or socioeco-
nomic status was not collected. Participants received course credit as
compensation for completion of the 1-hr study. Dyads were required
to know each other in order to facilitate naturalistic conversation.

Materials

A DS-600 DriveSafety driving simulator provided the experience
of driving an automatic shifting compact passenger sedan. Drive-
Safety software was utilized to program a 19-mile driving scenario,
which included two- and three-lane divided highways with speed
limits between 55 and 65 miles per hour and moderate traffic. The
other simulated vehicles changed speed and lanes to create irregu-
lar-flow traffic (Drews et al., 2008), which simulated realistic traffic.
Participants drove for approximately 15 min in each block. The
driving environment, the familiar dyads, and the naturalistic con-
versation topics were all designed to simulate natural conversations
while driving on a highway.

Separate vibrotactile detection response task devices (ISO DIS
17488, 2016), one for the driver and the other for the nondriver, were
used throughout the experiment. Following ISO DIS 17488 (2016)

guidelines, a small vibrating motor was attached to each of the
participants’ left collarbone at the base of the neck. The DRT onset
occurred pseudo-randomly every 3-5 s, and participants responded
with a small button attached to their right thumb. The vibration
stopped when the participant pressed the button or after 1 s had
elapsed. A dedicated microprocessor recorded millisecond-accurate
responses. Microphones were utilized to determine whether a DRT
stimulus occurred while the driver or nondriver was speaking, or
during silence.

Procedure

Dyads were randomly assigned to either the cell phone or
passenger conversation condition and participants were randomly
assigned to the driver or the other role first. Both participants in the
dyad completed the driving and nondriving roles, but they only
participated in the cell phone or passenger conversation condition
(i.e., in-person vs. cell phone conditions was a between-subjects
factor, see Table 1). Participants first performed a 5-min practice
block where one participant sat in the driver’s seat and the other
participant either sat in the passenger seat or at a remote location.
Both participants responded to the DRT for the 5 min and the
participant in the driver’s seat drove the vehicle. Participants then
switched roles and the procedure was repeated. After the practice
drives, participants selected 10 topics from a list of 20 conversation
starters listed by Psychology Today (Barreca, 2017; Prompts are
listed in Appendix). Participants held a conversation for 15 min
while driving and either sitting in the passenger seat or at the remote
location using a hands-free cell phone. Participants then switched
places and completed another 15 min of conversation.

Measures. DRT RT and hit rate (HR) was recorded for both
participants. The DRT stimulus presentation to the driver and the
nondriver were independent. Following ISO guidelines (ISO DIS
17488, 2016), anticipatory responses shorter than 100 ms (0.09%)
were excluded from statistical analysis. Driving performance mea-
sures included speed variability, root mean squared error (RMSE)
from the speed limit, and lateral lane deviation.

Table 1

Experimental Design for a 2 Between (Condition) X 2 Within (Role)
X 3 Within (Speaker) Repeated Measures Linear Mixed-Effects
Model

Condition Role Speaker

Randomly assigned
(between dyads)

Within participant
(2 X 15-min blocks)

Within participant
(unbalanced time)

None
Driver
Other
None
Driver
Other
None
Driver
Other
None
Driver
Other

Cell phone Driver
Other
Driver

In-person

Other
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Results

Differences in conditions between having a conversation with a
passenger and having a conversation with a remote participant via a
hands-free cell phone were tested in R (R Core Team, 2018). The
Ime4 package (Bates et al., 2015) was used to create linear mixed-
effects models (LMMs) with fixed effects of condition (2: cell phone
vs. in-person), the participant role (2: driver vs. nondriver), and
speaking demands (3: no talking, listening, and speaking) fully
crossed. We report Type-II Wald chi-square tests of differences in
RT, HR, and RMSE across conditions; 95% confidence intervals are
reported in square brackets. In all cases likelihood ratio tests selected
random slopes for the effect of drive on participants and random
intercepts for participants to account for the experimental design of
two drives per participant. Additionally, we included block as a
covariate to account for any effects of learning or fatigue.

Behavioral Measures
RT

Statistical analyses were performed on log-transformed RTs but
are not transformed in Figure 1 for clarity. Conversing increased RT
over no talking by 39 ms [23, 54], X2(2) = 850.67, p < .001 and
drivers responded more slowly than nondrivers by 89 ms [75, 102],
x*(2) = 8.13, p = .004. RT for participants in the cell phone
condition did not differ significantly from when participants con-
versed in-person, x>(1) = 2.76, p = .12.

Speaker interacted with participant role, ¥*(2) = 356.96, p < .001,
and with condition ¥*(2) = 37.81, p < .001. In the in-person
condition, the increase in RT from no talking to the driver speaking
was smaller for the nondriver, 27 ms, 95% CI [23, 31], than for the

Figure 1
Response Times of the Driver and Other Participant During a
15-min Drive, According to Who Was Talking and Who Was
Listening
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Note. 95% confidence intervals were calculated utilizing the Cousineau—
Morey method for repeated-measures designs (Baguley, 2012; Cousineau,
2005; Morey, 2008).

driver, 102 ms, [98, 106]. By contrast, the increase in RT between
no talking and the passenger speaking for the nondriver, 103 ms,
[99, 107], was greater than for the driver, 14 ms, [4, 23]. In the cell
phone condition, the increase in RT from no talking to the driver
speaking was smaller for the nondriver, 27 ms, [23, 31], than for the
driver, 48 ms, [38, 60]. By contrast, the increase in RT between no
talking and the passenger speaking for the nondriver, 102 ms, [99,
107], was greater than for the driver, 71 ms, [4, 23].

A three-way interaction, y*(2) = 9.33, p = .009, was driven by the
differences in RT between the cell phone and in-person conditions
for the driver when they were listening to the nondriver speak. This
suggests that the driver found it more difficult to listen to the other
talking in a cell phone conversation than to an in-person conversa-
tion (see Figure 1).

Hit Rate

A binomial LMM with a probit link was fit by maximum
likelihood using Laplace approximation (see Figure 2 for means
and 95% CIs). Conversing decreased HR over no talking by 4.21%
[3.21, 6.54], X2(2) = 850.67, p < .001, and drivers responded less
often than nondrivers by 1.32% [.75, 1.52], X2(2) =8.13, p = .004.
The effect of condition (i.e., cell phone vs. in-person) on HR was
significant, y*(1) = 10.39, p = .001.

The effect of condition interacted with who was responding to the
DRT, Xz(l) = 153.04, p < .001. Who was speaking also interacted
with who responded to the DRT, ¥*(1) = 39.77, p < .001. The
speaker was part of a significant interaction with the responder,
Xz(l) = 72.22, p < .001 (see Figure 2). As with the RT data, this
suggests that the driver found it more difficult to listen to a cell
phone conversation than to an in-person conversation.

Driving Performance

Drivers exhibited greater lateral steering deviation when talking,
M = .37 m, [.16, .58], than when listening, M = .30 m, [.17, .43],
x*(1) = 73.23, p < .001. Additionally, drivers in the cell phone
condition produced slightly smaller steering deviation, M = .31 m,
[.17, .45], than drivers in the passenger condition, M = .34 m,
[.16,.52], Xz(l) =7.32, p =.04. A similar main effect was found for
compliance with the speed limit (RMSE) between no talking,
listening, and speaking conditions y*(1) = 11.45, p = .021. How-
ever, the difference between speaking and listening conditions did
not achieve significance, *(1) = 1.45, p = .09. Finally, participants
drove more slowly overall when talking on a cell phone, M = 62.06
mph, [59.80, 64.32], than when conversing with a passenger, M =
64.2 mph, [62.30, 66.10], x*(1) = 9.45, p = .03. Table 2 reports
individual condition means and 95% confidence intervals.

Modeling Approach

Damaso et al. (2021) defined two types of omissions that occur
because of drift rate variability. “Intrinsic”” omissions occur because
the sampled rate for a trial can be negative, and so threshold will
never be reached. “Design” omissions occur when a positive drift
rate is sampled that is too small to reach the threshold in the 3 s
response window. Drift rates in the LBA vary according to a normal
distribution, and so the probability of an intrinsic omission in
speaking-demand condition i is p; = ®(v;/sv;) where ®(x) is the
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Figure 2
Hit Rate of the Driver and Other Participant During a 15-min Drive,
According to Who Was Talking and Who Was Listening
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Morey method for repeated-measures designs (Baguley, 2012; Cousineau,
2005; Morey, 2008).

integral of a normal distribution with mean x and a unit standard
deviation from —oo to zero, and v; and sv; are the rate distribution’s
mean and standard deviation. Design omissions speaking-demand
condition i occur with probability pp; = 1 — F(t = 3 | A;, b;, vi, sv;),
where F() is the cumulative distribution function for an LBA
accumulator (see Brown & Heathcote, 2008), A; is the range of
trial-to-trial variability in the starting point of accumulation, and b; is
the threshold in condition i. Combining the two types the total
omission probability is p7; = py; + (1 — pr)pp:» where the subscript T
indicates that the combined value is a function of task-related factors
as it depends on the same parameters that determine DRT responses.
Note that no extra parameters need to be estimated to produce
predictions about task-related omissions.

Damaso et al. (2021) also included an extra parameter, pc, to
allow for “contaminant” omissions with a different origin to task-
related omissions. This idea was drawn from Castro et al. (2019),
who attributed such omissions to a failure to encode the stimulus.
They estimated different values of p¢ to account for increased DRT
omissions when participants performed a secondary task (counting

backward). By itself this approach is essentially only descriptive as
there is no relationship between response and omission processes.
We preferred Damaso et al.’s approach as it links the two and so is
naturally able to account for correlations between these two perfor-
mance measures. Damaso et al. included both task-related and
contaminant omissions because they were required to account for
a few participants with high overall omission rates but treated their
probability as an individual difference variable that does not change
with secondary-task workload.

We made the same assumption about contaminant probability
with respect to speaking-demand conditions, so only one extra
parameter is estimated, and the overall probability of omissions
in condition i is pp; = pc + (1 — po)pp;- Hence, any differences in
omission rates between conditions are entirely accounted for by the
parameters of the evidence accumulation process, and so we focus
on these parameters in our analysis. Like Damaso et al. (2021), we
found that contaminant omissions varied widely over individuals,
being less than 5% for most but up to almost 15% for a few
participants.

Modeling Results

The DMC software (Heathcote et al., 2019) was used to fit models
in a Bayesian manner separately to each combination of role (driver
vs. passenger) and speaker-type condition (in-person vs. cell phone).
In each case we fit eight models that allowed various combinations
of thresholds (B) rates (v), rate standard deviations (sv), and
nondecision time (fy), to differ with the three speaking-demand
conditions (none, driver, other). To make models that allowed
threshold to vary with speaking-demand condition identifiable,
the threshold in the no-talking condition was fixed to one. Similarly,
for models that assumed the same threshold for all speaking-demand
conditions, its value was set at one.

In every case, the best model according to the Deviance Infor-
mation Criterion (DIC) model selection criterion included an effect
of speaking-demand condition on the threshold parameter and both
drift rate parameters but dropped an effect on nondecision time (see
Table 3). This model was used in all further analyses.

Parameter Tests

We report parameter estimates from the best model as posterior
medians with 95% credible intervals (in square brackets) and p value

Table 2
Means and 95% Confidence Intervals of Driving Performance for the Cell Phone and In-Person Conditions
In-person Cell phone
Speaker Speaker
None Driver Other None Driver Other
Dependent measure M (CI) M (CD M (CD) M (CI) M (CI) M (CI)
Steering deviation (RMSE) 0.30 (.13) 0.37 (21) 31(.18) 28 (.12) 34 (.18) 31 (.14)
Speed variability (RMSE) 2.5(1.2) 35(1.4) 29 (1.1) 2.1 (.81) 3.1 (1.0) 24(1.2)
Average speed (mph) 66.3 (5) 63.2 (6) 64.3 (5) 64.3 (4) 60.5 (5) 61.4 (5)

Note.
(i.e., driver), and when the other participant is speaking (i.e., other).

CI = confidence interval; RMSE = root mean square error; mph = miles per hour. When nobody is speaking (i.e., none), when the driver is speaking
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Table 3

The Difference Between Deviance Information Criterion (Smaller Values Indicate a Better Tradeoff Between Goodness-of-Fit and Model

Complexity) Relative to the Best Model

Condition Best 2nd 3rd 4th 5th 6th 7th 8th
Driver with passenger Bvsy Bvtysv VtpSV By Bty vty VsV v

0 126 204 296 418 600 668 1,326
Passenger with driver Bvsy Bvtysv Bv VoSV Bvty vito Vsy v

0 84 298 331 410 557 669 1,329
Driver with cell phone Bvsy Bvtysv ANY VsV Bvty By Vi v

0 4 111 509 855 1,016 1,225 1,729
Nondriver with cell phone Bvsy Bvtysv Bv VoSV Bvty vito Vsy v

0 134 237 272 428 573 676 1,313

Note.

The Deviance Information Criterion value for the best model in each row is subtracted from the values for all models in the row, so the best model has an

entry of zero). The models either allowed thresholds (B), rates (v), rate standard deviations (sv), or nondecision time (#,) to vary over the three speaking-demand
conditions. Models were fit to each condition and pair member role separately. For a discussion on the deviance information criterion, see Spiegelhalter et al.

(2002).

indicating the fixed-effect probability that one parameter is greater
than another with small p values supporting a difference.

Driver Responses With a Passenger. The response threshold
(B) remained fixed at one while there was silence in order to make
the model identifiable. We found that the response threshold (B) was
larger for talking than listening, .74 [.68, .80] versus .58 [.52, .63],
respectively, p < .001. The mean rate (v) decreased from silence to
listening, 3.52 [3.44, 3.61] versus 2.41 [2.24, 2.60], respectively,
p < .001, and from silence to talking, 3.5 [3.44, 3.61] versus 2.49
[2.34, 2.66], respectively, p < .001. There was little evidence for a
difference in mean rate (v) between listening and talking, 2.41 [2.40,
2.60] versus 2.49 [2.33, 2.66], respectively, p = .21.

Passenger Responses With a Driver. With the silent re-
sponses fixed at one, threshold (B) increased from listening to
talking, .58 [.52, .63] versus .73 [.68, .80], respectively, p <
.001. The mean rate (v) decreased from silence to listening 3.52
[3.44, 3.61] versus 2.41 [2.24, 2.60], respectively, p < .001, and
from silence to talking, 3.5 [3.44, 3.61] versus 2.49 [2.34, 2.66],
respectively, p < .001. There was little evidence for a difference in
mean rate (v) between listening and talking, 2.41 [2.24, 2.60] versus
2.49 [2.34, 2.65], respectively, p = .22.

Driver Responses With a Cell Phone. Again, the response
threshold (B) remained fixed at one while there was silence in
order to make the model identifiable. There was no evidence to
suggest that listening had a higher threshold than talking, 1.85
[1.60, 2.12] versus 1.82 [1.55, 2.14], respectively, p = .44. The
mean rate (v) increased from silence to listening, 4.83 [4.66, 5.01]
versus 6.33 [5.65, 7.03], respectively, p < .001, and talking, 4.83
[4.66, 5.01] versus 5.93 [5.28, 6.63], respectively, p < .001.
There was little evidence for a difference between listening and
talking, 6.33 [5.65, 7.03] versus 5.93 [5.28, 6.63], respectively,
p =.19.

Nondriver With a Cell Phone. With the silent responses fixed
at one, threshold (B) increased from listening to talking, .65 [.55,
.74] versus .83 [.72, .97], respectively, p < .01. The mean rate (v)
decreased from silence to listening, 3.49 [3.40, 3.59] versus 2.40
[2.20, 2.61], respectively, p < .001, and talking, 3.49 [3.40, 3.59]
versus 2.50 [2.26, 2.77], respectively, p < .001. There was little
evidence for a difference between listening and talking, [2.20, 2.61]
versus 2.50, [2.64, 2.77], respectively, p = .21.

Contributions to Workload

Workload is considered a multidimensional concept that one
representative measure will fail to capture (Gopher & Donchin,
1986). However, several mechanisms of performance and effort
requirements can be discussed within the context of goal-directed
behavior. For example, the process of changes in workload measure-
ments can be consciously mediated, with participants slowing in their
responses or failing to respond because they deliberately respond
more cautiously with higher workloads in the primary task. If the
driver maintains separate resource pools for the primary and second-
ary tasks, like in some resource theories of attention (e.g., Wickens,
2008), then a strategic increase in response certainty (i.e., caution)
would be responsible for slower DRT responses. If the tasks required
separate resources, dual-task costs would not be observed at all. In an
applied setting, a driver could prioritize reacting to traffic changes
over DRT responses when they perceive increased driving difficulty.
Previous research demonstrates a strong correlation between the DRT
and self-report measures of subjective workload (Strayer et al., 2015),
such as the NASA task load index (Hart & Staveland, 1988).

However, reductions in a unitary pool of resource may occur due
to both tasks in a more traditional theory of attention (Kahneman,
1973), especially when there is an implicit task priority. In this case,
the primary task would receive the resource necessary to complete
the task to the operator’s perceived ability and whatever is left would
be allocated to the second task. If the resources allocated did not
match the required workload, processing of that task would slow. In
our modeling terms, this would be a slowing of the rate of evidence
accumulation toward a response.

To our knowledge, this is the first study to measure and model the
natural and dynamic ebb and flow of mental workload of both
interlocutors in a conversational dyad, as most studies block the
experimental conditions and only obtain measurements from one
participant. We observed a reciprocal tradeoff in workload for the
conversational dyad such that when one participant was speaking
their workload, as inferred from the DRT, was higher than when
they were listening. An inverse pattern was observed for the other
participant (e.g., higher workload when the other participant was
listening than when the other participant was talking). Moreover, the
driving task showed an additive relationship with the conversation
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(i.e., higher for the driver than the nondriver), suggesting that the
driving and the conversation tasks compete for the same limited
capacity resources. The data help to explain why a conversation can
lead to driver-restricted attention (e.g., Regan et al., 2011). This
impairment is most apparent with cell phone conversations due to
the compensatory factors associated with passenger conversations
(e.g., Drews et al., 2008).

Our model selection indicates that differences in threshold and
rate (both mean and variability) play a significant role in explaining
the variations in workload. To quantify their relative importance, we
systematically held constant the effect of each parameter by setting
the parameter to its average value across conditions while leaving
the other parameters at their estimated values and simulated DRT
data to determine the reduction in the model’s ability to account for
the workload differences (Strickland et al., 2018). The reduction in
variance accounted for was computed using the following equation:

(See above)

Driver Responses With a Passenger. We found that for
drivers with a passenger, RT slowed 79 [43, 115] ms when talking
compared to listening, but that this effect disappeared in the
simulated data when the threshold (B) was fixed at its average,
5 [-169, 179] ms. When mean rate (v) was fixed, the effect
decreased by 21 ms to 59 [—43, 161] ms. With fixed B, the model
lost 93.67% of the effect while with fixed mean v, the model lost
26.58% of the effect.

Passenger Responses With a Driver. We found that the effect
of talking compared to listening, 79 [43, 115] ms, disappeared for
the simulated data when the threshold (B) was fixed at its average,
—58 [—153, 37] ms. When mean rate (v) was held fixed, the effect
was hardly reduced, 75 [12, 137] ms. The effect of removing B
accounted for an increase in the effect of 73% while removing mean
rate (v) decreased 5% of the effect.

Driver Responses With a Cell Phone. We found that for
drivers talking on a cell phone, RT slowed 74 [33, 115] ms
when talking compared to silence, but that this effect disappeared
for the simulated data when the threshold (B) was fixed at its
average, 5 [—169, 179] ms. When mean rate (v) was fixed, the
effect decreased by 21 ms to 59 [—43, 161] ms. With fixed B, the
model lost 85.64% of the effect while with fixed mean v, the model
lost 26.58% of the effect.

Nondriver With a Cell Phone. We found that for drivers
talking on a cell phone, RT slowed 93 [45, 141] ms when talking
compared to silence, but that this effect disappeared for the simu-
lated data when the threshold (B) was fixed at its average, 15 [—121,
149] ms. When mean rate (v) was fixed, the effect decreased by 11
ms to 82 [—13, 181] ms. With fixed B, the model lost 83.87% of the
effect while with fixed mean v, the model lost 11.83% of the effect.

Discussion

We found that the workload of the driver and nondriver traded off
in a naturalistic conversation. Overall, the passenger’s workload was
lower than that of the driver. The fact that RT was elevated for the
driver suggests that the driving task and the conversation task

competed for limited attentional resources. The reciprocal pattern
observed when the dyad was conversing (e.g., higher for the driver
and lower for the nondriver when the driver was speaking than when
the driver was listening) demonstrates the complexity of measuring
the cognitive workload of conversations while driving.

The DRT data were modeled using linear ballistic accumulation
with occasional response omissions (LBAO). According to the
deviance information criterion, the model omitting #, (i.e., Bvsv)
best fit the data, showing that the perceptual encoding and motor-
response parameters were not necessary to differentiate between the
experimental conditions. The primary factor differentiating a driver
talking compared to not talking was the threshold to a response
(the model with fixed v accounting for 93% of the effect when with a
passenger and 85% when talking on a cell phone), with the evidence
accumulation rate (i.e., the model with fixed B) accounting for about
26% of the effect.

Importantly, the LBAO modeling shows that the division of
attention between driving and conversing reduces the rate of evi-
dence accumulation. The pattern varies slightly for in-person and
cell phone conversations, but in both cases the workload differences
are the result of changes in both the response threshold and the rate
of evidence accumulation. This pattern differs from that of Tillman
et al. (2017), in which dual-task costs were attributed solely to
changes in response threshold. The current data suggests that
aggregating over listening and speaking may have masked any
effects of workload on the rate of evidence accumulation.

It is worth considering three possible outcomes of the LBAO
modeling and how they might inform our theoretical understand-
ing of dual-task performance. One possibility is that the addition
of a secondary task increases the response threshold, but leaves
the rate of evidence unchanged (e.g., Tillman et al., 2017).
Essentially, dual-task performance is slowed under this scenario
because of response caution. Another possibility is that the
addition of a secondary task decreases the rate of evidence
accumulation but leaves the response threshold unchanged.
Essentially, dual-task performance is slowed under this scenario
because the bandwidth of information processing for each task
has been reduced by a finite resource allocation policy (e.g.,
Kahneman, 1973). Finally, the addition of a secondary task could
increase the response threshold and decrease the rate of evidence
accumulation. This latter possibility is what was observed in the
present study. Dual-task performance was altered because of
response caution and a splitting of the information-processing
bandwidth.

Previous research can account for the presence of these parame-
ters. For example, Drews et al. (2008) demonstrated that passengers
could modify their behavior when perceiving an especially high
workload driving environment. This could be a source of differences
in model parameters between the nondrivers, where a majority of the
conversational differences are captured by prioritization decisions
(i.e., the threshold parameter), and the drivers, where a larger
proportion of the effect is accounted for by limited capacity (i.e.,
the rate parameter).
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Our research was not sufficiently powered to examine differences
in the nature of the conversation (e.g., neutral vs. emotional), the
degree of familiarity of the dyads, or individual differences in
capacity. We posit that future research using the dual-DRT meth-
odology will help to shed light on how workload is modulated by
these factors, as literature suggests that they have an impact on
aggregate performance (e.g., Hickman et al., 2015).

Other limitations include an inability with the present study’s
design to meaningfully address questions of individual differences
within dyad interactions. Although the study recruitment approach
helped to ensure that all the participants previously knew the other
member of the dyad, the degree of familiarity was not specified.
Additionally, some dyads were mixed gender while others were not.
Although practically interesting, the present study would be under-
powered in addressing these factors’ impacts on cognitive workload.
Previous research has also demonstrated that the emotional valence
of conversation can influence various factors of performance (e.g.,
Hickman et al., 2015; McKnight & McKnight, 1993; Nunes &
Recarte, 2002). Although we could not control for the strength of
this association, all dyads received the same discussion prompts and
each member was given a turn to lead the discussion of the prompt.

The DRT method used herein to explore the dynamic ebb and
flow of workload in a conversational dyad illustrates the potential
for using this method for examining workload across two or more
individuals working as a team in other operational environments.
Based on the 2-DRT case used in the current research, having
n-DRT units deployed across a team of individuals may provide
insights into the flow of workload across the team as they perform a
complex task. Future research should consider this possibility.
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Appendix

Conversation Question Prompts

1. What was the worst school day you ever had?

2. What was the best school day you ever had?
3.  What was the worst meal you ever cooked?
4.  What was the best meal you ever cooked?
5. What was the worst outfit you ever wore?

6. What was the best outfit you ever wore?

7. What is the worst song that you love?

8. What is the song that you think is the best?
9. What is the worst photograph anyone ever took of you?

10. What is the best photograph anyone ever took of you?
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